Improved estimation of site occupancy using penalized likelihood.

نویسندگان

  • Monica Moreno
  • Subhash R Lele
چکیده

When detection or occupancy probability is small or when the number of sites and number of visits per site is small, maximum likelihood estimators (MLE) of site occupancy parameters have large biases, are numerically unstable, and the corresponding confidence intervals have smaller than nominal coverage. We propose an alternative method of estimation, based on penalized likelihood. This method is numerically stable, the estimators have smaller mean square error than the MLE, and associated confidence intervals have close to nominal coverage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

Dealing with detection error in site occupancy surveys: what can we do with a single survey?

Aim Site occupancy probabilities of target species are commonly used in various ecological studies, e.g. to monitor current status and trends in biodiversity. Detection error introduces bias in the estimators of site occupancy. Existing methods for estimating occupancy probability in the presence of detection error use replicate surveys. These methods assume population closure, i.e. the site oc...

متن کامل

IMPROVING GAUSSIAN MIXTURE DENSITY ESTIMATES 1 Averaging

We apply the idea of averaging ensembles of estimators to probability density estimation. In particular we use Gaussian mixture models which are important components in many neural network applications. One variant of averaging is Breiman's \bagging", which recently produced impressive results in classiication tasks. We investigate the performance of averaging using three data sets. For compari...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

APPLE: Approximate Path for Penalized Likelihood Estimators

In high-dimensional data analysis, penalized likelihood estimators are shown to provide superior results in both variable selection and parameter estimation. A new algorithm, APPLE, is proposed for calculating the Approximate Path for Penalized Likelihood Estimators. Both convex penalties (such as LASSO) and folded concave penalties (such as MCP) are considered. APPLE efficiently computes the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 91 2  شماره 

صفحات  -

تاریخ انتشار 2010